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[2] ABSTRACT: The objective of this program is to understand the effects of space radiation on multiple-
quantum-well (MQW) photonic devices through a coordinated program of experimental characterization,
analysis, and modeling. The work has focused on MQW laser diodes. Photonic devices based on MQW
technology are widespread in both commercial and military applications. Such devices and systems offer
an ideal opportunity for understanding the effects of the space radiation environment on nano-structures
and provide insight into the physics of radiation effects on a class of devices that will revolutionize future
electronic and optoelectronic systems. In this program, we have looked at proton-irradiation effects in MQW
laser diodes, quantum dots, and high-electron mobility transistors. Irradiation has been performed using
high-energy protons because they produce both long-term ionization damage and displacement damage.
Some of the key results are: (1) Proton-induced damage in MQW laser diodes is dominated by introduction
of non-radiative recombination centers. The result is an increase in the threshold current, but the slope
efficiency does not change significantly at typical fluences. (2) Proton-induced damage in MQW laser diodes
exhibits complex temporal dependence because of in-situ and post-irradiation annealing. The annealing
process is characterized by three different time constants, corresponding to different types of defects. (3)
Proton-induced damage in MQW laser diodes is nearly independent of energy in the range studied (between
50 and 200 MeV), as is the non-ionizing energy loss. This differs from results obtained from GaAs laser
diodes and resistors. (4) A model for radiation-induced damage in bulk and MQW laser diodes has been
developed that agrees with the experimental data. (5) The photoluminescence signal from Ge/Si quantum
dots can be completely destroyed by proton irradiation, but it recovers partially after thermal annealing.
(6) Proton irradiation seriously degrades the saturation current and transconductance of AlxGalxN /GaN

high-electron mobility transistors. Rapid thermal annealing at 800 C causes the devices to recover. (7




Measurements of spectral changes in the output of proton-irradiated MQW laser diodes were made. The
variation in the wavelength was relatively small, but in one case it shifted by about 1 nm. This is significant

for potential applications.

[3] TECHNICAL PROJECT SUMMARY: An outline of the research tasks completed during the period of this
contract is given below. The detailed results associated with each of these tasks have been reported in AFOSR
technical progress reports as well as numerous journal publications and student theses. A comprehensive
list of these is also provided below. Recent results that are not yet available in the public domain have been

included as an attachment to this report.
1. Proton Effects on MQW Laser Diodes
(a) Quantified threshold current damage factor for various fluence/energies.
(b) Characterized bias and orientation effects.
(c) Discovered useful annealing behavior in damaged MQW laser devices.
(d) Correlated novel post-anneal IV behavior with optical power increases.
9. Proton Irradiation Effects on Ge Quantum Dots
(a) Experimentally evaluated Ge quantum dots under various proton irradiation conditions.
(b) Demonstrated both loss and recovery of photoluminescence from Ge dots.
(¢) Compared buried and surface dots with irradiation effects on quantum wells and quantum wires.
3. Laser Simulation
(a) Developed defect model for proton-induced damage.
(b) Investigated defect impact on various physical parameters.
(c) Discovered nonlinear dependence of threshold current on damage factors.
(d) Validated simulation model through extensive experimentation.
4. Proton-Irradiation Effects on High-Electron Mobility Transistors

(a) Quantified the degradation of saturation current and transconductance with proton irradiation in
HEMT devices.

(b) Performed annealing study and explained recovery for various experimental conditions.
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Galloway, ” Annealing Effects on Multi-Quantum-Well Laser Diodes after Proton Irradiation,” IEEE Trans.
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ATTACHMENT
Recent Laser Diode Wavelength Measurements

During the no cost extension we have been working on measuring the effects of proton radiation on MQW
laser wavelength. Our first task was to establish a measurement station for laser wavelength characterization.
Temperature stabilization was found to be a critical feature of this apparatus. This is due to the strong
wavelength variation with temperature exhibited by these laser devices. Using a Newport TE-stabilized laser
mount together with an Anritsu optical spectrum analyzer, laser wavelength was measured as a function of
drive current and temperature. Some results are shown in the figure below. From the data, it is clear that
laser wavelength has been unaffected by all but one of the proton fluence levels studied. For this laser we
find a roughly 1 nm departure from the expected operating wavelength. Further, this red shift is found to
be consistent over a large range of operating temperatures and bias current levels. We should note that a
1 nm change in laser wavelength is consistent with a roughly 10 mA change in bias current or equivalently,
a roughly 6 degree change in operating temperature. Although we believe that these variations can be
significant in the context of OE system operation and especially in the case of fiber-based devices, at this
time it is unclear which underlying physical mechanism is responsible for the wavelength shift (i.e., free

carrier effects, bulk index variation, local temperature changes, etc.).




Wavelength Data for all Vandy Lasers
T=17 C - increasing current trials
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Wavelength Data for all Vandy Lasers
T=19 C - increasing current trials
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Wavelength Data for all Vandy Lasers
T=18 C - increasing current trials
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1. Difference between the L-I History and Spectrum Analysis:

Vandy L-I History

UA Spectrum

#12 not working

#24 not working

#6, #17, #24 can be regarded as the same group

#6, #12, #17 showed the same spectrum

#20, #21 can be regarded as the same group

#20 operates at Snm longer wave length
#21 operates at 10nm shorter wave length
than #6,#12,and #17

2. Irradiation Conditions & L-I changes after Irradiation

Sample Irradiation & Annealing

Threshold current shift after
Irradiation

6 200 MeV, Bias 35 mA, Max fluence 1E14,
Post-rad annealing 30 min @ short

~T7mA

12 100 MeV,

1E14 Irradiation + 30 min. Annealing with bias 40 mA
(5E13 Irradiation + 30 min. Annealing with 18 mA)*2 times

Device dead

No post-rad annealing

17 100 MeV, ~12mA
5E13 Irradiation + 30 min. Annealing with Bias TuA

20 100 MeV (low flux: 10 times less) ~1mA
5E13 Irradiation + 30 min. Annealing with Bias 45 mA

21 100 MeV (low flux: 5 times less) ~2mA
5E13 Irradiation + 30 min. Annealing with Bias 45 mA

24 200 MeV, Bias 1 nA, Max fluence 1E14, ~15mA
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